DESAISONNALISER UNE SERIE TEMPORELLE

6 - Le modele Reg-ARIMA

ALAIN QUARTIER-LA-TENTE



Objectifs de cette séquence

Objectifs : modélisation Reg-ARIMA, pré-ajustement de X13-ARIMA.
Aprés cette séquence, vous saurez :

e La structure et les fonctions d'un modéle Reg-ARIMA

e Reconnaitre les modéles de JD+ a partir des diagnostics

e Modifier les spécifications du modéle
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Questions de positionnement

Qu’est-ce qu'un processus stationnaire ?

Tendance, cycle, saisonnalité sont-ils des processus stationnaires ?

Que signifie “ARIMA" et que refléte un tel modele ?

Comment se comportent les erreurs de prévision d'un modele ARIMA ?
Qu’est-ce qu'un SARMA ?

Saurons nous “deviner” le comportement de la saisonnalité a travers un
modeéle ARIMA 7

Que sont les critéres d'information et a quoi ca sert ?
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X13-ARIMA

Deux modules :

e Reg-ARIMA : phase de pré-ajustement
o Régression linéaire pour correction préalable des « non-linéarités »
o Modélisation ARIMA pour faire des prévisions
o Deux étapes indépendantes en schéma, mais traitements itératifs !
e X11 : phase de décomposition
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La partie « régression linéaire » de X13-ARIMA

Objectif : supprimer les « non-linéarités » par régression linéaire :

e outliers
o effets de calendrier
e autres régresseurs éventuels (ex : température)

Y= Z@ioit + ZBjCjt + Xz
Série linéarisée : X¢ = Yy — > &Oi — 3 B;Cie
GROS résidu de la régression

N'est pas le résidu Reg-ARIMA, qui est un bruit blanc

La décomposition est réalisée sur la série linéarisée
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Stationnarité et différenciation

Sommaire

1. Stationnarité et différenciation
1.1 Notion de stationnarité
1.2 Repérer la stationnarité

1.3 Stationnariser une série
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Stationnarité et différenciation Notion de stationnarité

Quelques définitions (1/2)

Série temporelle : suite de variables aléatoires (X;); dont on observe une
réalisation (X;(w)):

La suite (X;): est appelée processus stochastique

Un processus est dit stationnaire lorsque la loi de X; n'évolue pas dans le
temps : distribution Vs, (X, ..., X;1+s) indépendante du temps

= série plus ou moins horizontale et de variance constante

© Notion pour faire I'inférence et construire un modeéle ARIMA
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Stationnarité et différenciation Notion de stationnarité

Quelques définitions (2/2)

Stationnarité, hypothese invérifiable @ en pratique processus faiblement
Stationnaire :

¢ les moments d'ordre 2 existent
e espérance constante

e covariance entre t et t — h ne dépend pas du temps, mais de la distance h
— variance constante

Exemple : un bruit blanc, i.e. :
e espérance nulle
e covariance entre t et t — h nulle, pour tout h # 0

e variance non nulle et constante
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Stationnarité et différenciation Repérer la stationnarité

Comment identifier une série non-stationnaire (en
niveau) ?

e Tracer le chronogramme
o Etudier I'ACF :

o Série non-stationnaire : tend lentement vers 0 et 5(1) souvent positif et
élevé

o Série stationnaire : tend rapidement vers 0
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Repérer la stationnarité

Exemple

Nombre de résidents australiens
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Repérer la stationnarité

Exemple

Loi normale (0,1)

' ' ' ' ' '
2000 2002 2004 2006 2008 2010
Time

Series: y
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Stationnarité et différenciation Stationnariser une série

La différenciation pour stabiliser le niveau

e Si la série différenciée est un bruit blanc de moyenne nulle (marche
aléatoire) :

t
(I=Byr=yi—ye1=¢ct = ye=yo+ »_&i
i=1
© Modele naif

Généralement mouvement a la hausse ou a la baisse aléatoire,

e Si la série différenciée est un bruit blanc de moyenne non nulle (marche
aléatoire avec dérive / drift) :

t
(I=Byr=c+e = ye=yo+ct+y e
i=1

e Parfois on a besoin de différencier plusieurs fois
(I — B)?y: = (y+ — yt—1) — (Ye—1 — y+_2) ou de faire une différenciation
saisonniére (I — B™)y; = ¥+ — Ym

¢ Si saisonnalité importante, commencer par la différenciation saisonniére
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Stationnarité et différenciation Stationnariser une série

Modeles Intégrés (1/3)

Soit X, processus « tendance linéaire » :

Xi=a+ft+e;

Calculer I'espérance et la variance de la v.a. X; 7
X est stationnaire ?

Différence d'ordre 1 :
(I—B)X; =?
La série obtenue est-elle stationnaire ?

Si X est un processus « tendance polynomiale d'ordre 2 », comment
stationnariser la série ?
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Stationnarité et différenciation Stationnariser une série

Modeles Intégrés (2/3)

Soit X, processus « saisonnier stable » :
Xt = St + e avec Vt7 St = 5t+s

X stationnaire ?

Différence d'ordre 1, avec retard d'ordre s :

(I — B%)X, =?

La série obtenue est-elle stationnaire ?

Si X; = a+ bt + S; + €+, que donnerait cette différenciation ?
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Stationnarité et différenciation Stationnariser une série

Modeles Intégrés (3/3)

Une différenciation « simple » d'ordre d supprime les tendances polynomiales

d'ordre d :
(1 - BY'X:

Une différenciation « saisonniére » supprime aussi les tendances linéaires :

(I — B)X,

Une différenciation « saisonniére » d'ordre D plus grand que 1 est rare :

(I - B5)PX,
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Station é et différenciation Stationnariser une série

Exemple
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Stationnariser une série

Exemple

diff(co2, 12)

1960 1970 1980 1990
Time
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Exemple

Stationnariser une série
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Stationnarité et différenciation Stationnariser une série

Faut-il toujours différencier ?

Pour modéliser une série avec tendance on peut distinguer deux types de
non-stationnarité :

1. Modeéle trend-stationnaire :
Xe=a+ bt +e;
2. Modele avec racine unité
t
(1-B)Ye=b+n => Ye=a+bt+ > 1
i=1

tend. stochastique

On a V[X;] = Vl[e;] = cst indépendante du temps mais V[Y;] = tV[n,]
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Stationnariser une série

Exemple

Marche aléatoire
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Modélisation ARIMA

Sommaire

2. Modélisation ARIMA
2.1 Modélisation ARIMA
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La partie « modélisation ARIMA »

ARIMA, modéle auto-projectif :
Xe = f(Xt—b Xt—2, X3, .o, €1,E4-1,E¢-2 - - - )
Trouver f ?

Sous hypothése de stationnarité, il existe un « modéle ARMA » qui approche
la série.

Conséquence (th de Wold) : erreurs de prévision se comportent comme le
résidu du modeéle (bruit blanc)

On privilégie les modéles avec faible nombre de parameétres.

Méthode de Box et Jenkins pour estimer et juger de la qualité des modéles.
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Construction du modéle ARIMA

Sommaire

3. Construction du modele ARIMA
3.1 Modeles AR et MA
3.2 Modeles SARMA et modéles intégrés
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Modeles Autorégressifs (AR)

B opérateur retard : B(X;) = X;_1, et BP(X¢) = Xe—p

Modele autorégressif

d'ordre P, AR(p) : Xt = ¢1Xt—1 + ¢2Xt—2 +-+ (prtfp + &t

= (1—¢1B— B> — - — $,BP)X; = &:
< q)(B)Xt = &t

¢ innovation du processus (bruit blanc indépendant du passé de X)

Un AR modélise I'influence des p réalisations passées sur la réalisation
courante : effet mémoire

Exemples :

e AR(1) : niveau d'un lac ;
* AR(2) : nombre de taches solaires - Yules
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Modeles « Moving Average » (MA)

Modele moyenne

mobile d'ordre g, Xe=er— 01601 — ot — - —Ogerq

MA(q) : _ 2 q
<:>Xt—(1_918—028—"‘—qu)gt
— Xt = @(B)gt

Processus MA toujours stationnaire

Résulte d'une accumulation non persistante de “q” chocs indépendants
Phénoménes qui fluctuent autour d'une moyenne : MA(1) avec une constante
Exemples :

e Jeu de fléchettes
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Construction du modéle ARIMA Modeles AR et MA
Modeles ARMA

Modeles ARMA(p, q) : combine AR(p) et MA(q), sans ou avec constante
®(B)X; = O(B)z:

Processus ARMA résulte de I'effet “mémoire” et d'une accumulation non
persistante de chocs aléatoires indépendants
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Construction du modéle ARIMA Modéles SARMA et modeles intégrés
Modeles SARMA

Modele SARMA(P, Q) : ARMA avec polynéme d’ordre s (4 séries
trimestrielles, 12 séries mensuelles) :

®(B%)X; = ©(B®)er ou &4(B)X: = O4(B)es

Intérét :

e montrer autocorrélations d’ordre s
e simplifier |'écriture par factorisation

ARMA(p, q)(P, @) combine parties réguliére et saisonniére :
ARMA(p, q) x SARMA(P, Q).

Identique a ARMA(p+ P *s,q+ Qxs)
Exemple série mensuelle : ARMA(1,1)(1,1) = ARMA(13,13)
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Modeles Intégrés (1/3)

Soit X, processus « tendance linéaire » :

Xi=a+ft+e;

Calculer I'espérance et la variance de la v.a. X; 7
X est stationnaire ?

Différence d'ordre 1 :
(I—B)X; =?
La série obtenue est-elle stationnaire ?

Si X est un processus « tendance polynomiale d'ordre 2 », comment
stationnariser la série ?
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Modeles Intégrés (2/3)

Soit X, processus « saisonnier stable » :
Xy =5 +¢e avec Vt, S = Sy

X stationnaire ?

Différence d'ordre 1, avec retard d'ordre s :
(I - B%)X: =7
La série obtenue est-elle stationnaire ?

Si X comportait en plus une tendance linéaire, que donnerait cette
différenciation 7
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Modeles Intégrés (3/3)

Une différenciation « simple » d'ordre d supprime les tendances polynomiales

d'ordre d :
(I - B)¥X,

Une différenciation « saisonniére » supprime aussi les tendances linéaires :
(1= B*)X;
Une différenciation « saisonniére » d'ordre D plus grand que 1 est rare (dans

D+, D<1):
(I - B5)PX,
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Construction du modéle ARIMA Modéles SARMA et modeles intégrés
Modeles ARIMA

ARIMA(p, d, q) modélise les séries non stationnaires avec tendance

®(B)(I - B)'X, = ©(B)e:

ARIMA(p, d, q)(P, D, Q) modélise les séries avec tendance et saisonnalité
®(B)®s(B)(I — B)!(I — B*)PX; = ©(B)Os(B)e:

Factorisation des polyndmes en B de la partie réguliére et de la partie
saisonniére
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Modeles ARIMA et saisonnalité (1/3)

Considérons la partie saisonniere d'un ARIMA :

1 - Une série avec modeéle (p, d, )(0,0,0) est-elle saisonniére ?
2 - que dire de (p,d, q)(0,0,Q) ?

3-(p,d,q)(0,1,0) 7

4-(p,d,q)(1,0,0) 7
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Modeles ARIMA et saisonnalité (2/3)

Réponses :
1 - Non, aucune autocorrélation d'ordre s

2 - Non, un MA refléte des fluctuations non persistantes, la saisonnalité
persiste dans le temps

3 - Oui, une saisonnalité stable
4 - Ne sait pas, dépend de la valeur du coefficient ¢,

® ¢, petit en valeur absolue : pas de saisonnalité, phénoméne non
persistant qui se dissipe vite

® ¢ négatif : pas de saisonnalité, phénomeéne a répétitions bi-annuelles

e ¢ grand (proche de 1) et positif : série saisonniére, autocorrélations
d'ordre s qui décroit lentement
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Modeles ARIMA et saisonnalité (3/3)

Deux cas fréquents :

* (p,d,q)(0,1,1) saisonnalité stable en moyenne, avec des fluctuations
ponctuelles du niveau de 6, (plus c'est grand, plus ca fluctue)

e (p,d,q)(1,0,1) saisonnalité évolutive avec dérive + fluctuations
ponctuelles de niveau 6
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Détermination du modéle ARIMA

Sommaire

4. Détermination du modele ARIMA
4.1 Méthode de Box-Jenkins
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Méthode de Box-Jenkins

1. Stationnariser le processus : d, D

2. ldentifier les ordres ARMA : p, P, q, Q © structure d’autocorrélation de
la série

3. Estimer les coefficients ARMA @ degré de variabilité de la structure
d'autocorrélation

4. Valider le modele © résidus = bruit blanc ?
5. Choix du modele (si plusieurs modeles valides) @ critéres d'information

6. Prévision
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Détermination du modéle ARIMA Méthode de Box-Jenkins

Stationnarité et ACF

Série stationnaire

Série non stationnaire: (I —B) pr station.

nﬂﬂnnnﬂﬂnﬂﬂﬂnﬂﬂﬂnnnnn
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Détermination du modéle ARIMA Méthode de Box-Jenkins

Choix du modeéle

Critéres d'information (& minimiser) pour comparer les modéles :

o L'AIC (critere de Akaiké) :
AlC(p,q) = —=2In(L) + 2+ (p+q)

e L'AICC (corrigé pour les courtes périodes) :

n—|—p—|—1>_1

AICC(p, q) = —2In(L) +2(p + q) (1 T Nows

e Le BIC (critere de Schwarz) :

BIC(p,q) = —2In(L) + (p + q) In(Nops)

Ne pas comparer des modeles d'ordre de différenciation différents
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Principe de TRAMO-SEATS

Sommaire

5. Principe de TRAMO-SEATS
5.1 TRAMO
5.2 SEATS
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Principe de TRAMO

TRAMO = Time series Regression with ARIMA noise, Missing values and
Outliers

Mémes objectifs du pré-ajustement de X13-ARIMA (convergence des
algorithmes dans JDemetra+ 3.0) :

e corriger la série de points atypiques, des effets de calendrier et imputation
des valeurs manquantes

e prolonger la série

e fournir 3 SEATS le modele ARIMA a la base de la décomposition
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25
Principe de SEATS (1/3)

SEATS = Signal Extraction in ARIMA Time Series
SEATS utilise le modéle ARIMA de la série linéarisée TRAMO :

®(B)d(B)(I — B)4(I — B)P X, = ©(B)O(B) ¢;
o(B) o(B)

Hypothéses :
1. La série linéarisée peut étre modélisée par un modele ARIMA

2. Les différentes composantes sont décorrélées et chaque composante peut
étre modélisée par un modeéle ARIMA

3. Les polynomes AR des composantes n'ont pas de racine commune
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Principe de SEATS (2/3)

On factorise le polyndme AR &(B):

®(B) = ¢7(B)¢s(B)dc(B)

e ¢7(B) racines correspondant a la tendance
e ¢s(B) racines correspondant a la saisonnalité

* ¢¢(B) racines correspondant au cycle

6 - Le modeéle Reg-ARIMA 41 /45




—
Principe de SEATS (3/3)

X; est exprimé sous la forme :

_9(B)_ _ 91(B) fs(B) bc(B)

Xe = €t = ET,e+ est+ Ectt v
CTeB) T 9r(B) T s(B) T ge(B) T oS
——— Irrégulier

Tendance Saisonnalité Cycle (bruit

blanc)

Un modéle ARIMA est associé a chaque composante.
Infinité de solutions : on retient celle qui minimise la variance de I'irrégulier
© Estimation par filtre de Wiener-Kolmogorov

© En France c'est X-13ARIMA qui est principalement utilisé (il n'y a pas de
“meilleure” méthode)
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Conclusion

Sommaire

6. Conclusion
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Conclusion

Les essentiels

Les séries économiques ne sont pas stationnaires, ni leur niveau, ni leurs
fluctuations ne sont constants dans le temps

Intégrer un processus permet de le stationnariser

Un MA capte les fluctuations non persistantes autour d'un niveau constant -
processus stationnaire

Un AR met en évidence l'influence des réalisations passées sur la réalisation
courante

Un ARIMA refléte la structure des autocorrélations de la série, ainsi que le
degré de sa variabilité dans le temps

L'examen des résidus permet de valider les modeéles, le choix “optimal” se
fait grace aux critéres d'information
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Conclusion

Exercices

Exercices : écrire les modeles Reg-ARIMA de vos séries a partir des éléments
donnés par JDemetra+
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