Skip to contents

Smoothing using the Henderson filter

Usage

henderson_smoothing(
  x,
  endpoints = c("Musgrave", "QL", "CQ", "CC", "DAF", "CN"),
  length = NULL,
  icr = NULL,
  local_icr = FALSE,
  asymmetric_var = FALSE,
  degree = 3,
  ...
)

Arguments

x

input time-series.

endpoints

Method used for the asymmetric filter. By default the Musgrave method is used

length

the length of the

icr

I/C ratio used for the asymmetric filter.

local_icr

if TRUE, the I/C ratio is estimated locally (as described in Quartier-la-Tente, A. (2024)) instead of globally.

asymmetric_var

when local_icr = TRUE, if asymmetric_var = TRUE then the variance is estimated for each asymmetric filters instead of using the variance associated to the symmetric estimates.

degree

if local_icr = TRUE, degree of polynomial used to estimate the local bias parameter.

...

other parameters passed to rjd3filters::lp_filter().

References

Quartier-la-Tente, A. (2024). Improving Real-Time Trend Estimates Using Local Parametrization of Polynomial Regression Filters. Journal of Official Statistics, 40(4), 685-715. https://doi.org/10.1177/0282423X241283207.