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Introduction

Introduction

Over the long term, institutions, corporate norms and the behavior of
economic agents evolve, leading to changes in the dynamics of the economic
series studied.

Many models are based on linear regressions (WDA, forecasts, benchmark,
etc.), which assume that relationships between variables are fixed over time.

Assumption true in the short term, but generally false in the long term or
in the presence of structural changes (change of nomenclature, definition,
COVID. . . ).

Goal:
• to study methods of relaxing this constraint;
• propose a simple way of implementing and comparing these methods

(package I tvCoef).
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Introduction

Linear regression model

General idea:

yt = β0 + β1x1,t + · · · + βpxp,t + εt εt ∼ N (0, σ2)
⇐⇒ yt = βXt + εt

β estimated using the OLS

Example: forecast of French production growth in other manufacturing using
• IPI overhang
• INSEE business climate
• Balances of opinion published by INSEE and Banque de France

Model estimated with stats::lm() or dynlm::dynlm()

Even if machine learning models can be used, linear models performs well
and are often used as reference models
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Introduction

I code (1)
library(tvCoef)
library(dynlm)
data <- window(manufacturing, start = 1993, end = c(2019, 4))
y <- data[, "prod_c5"]
model_c5 <- dynlm(

formula = prod_c5 ~ overhang_ipi1_c5 + insee_bc_c5_m3 +
+ diff(insee_tppre_c5_m3, 1) + diff(bdf_tuc_c5_m2, 1),

data = data
)
summary(model_c5)

Time series regression with "ts" data:
Start = 1993(2), End = 2019(4)

Call:
dynlm(formula = prod_c5 ~ overhang_ipi1_c5 + insee_bc_c5_m3 +

+diff(insee_tppre_c5_m3, 1) + diff(bdf_tuc_c5_m2, 1), data = data)

Residuals:
Min 1Q Median 3Q Max
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Introduction

I code (2)

-2.33630 -0.46798 0.02535 0.47036 1.61058

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.223513 0.798384 -6.543 2.46e-09 ***
overhang_ipi1_c5 0.100841 0.022195 4.543 1.52e-05 ***
insee_bc_c5_m3 0.050966 0.007969 6.396 4.89e-09 ***
diff(insee_tppre_c5_m3, 1) 0.040771 0.011052 3.689 0.000363 ***
diff(bdf_tuc_c5_m2, 1) 0.410629 0.068227 6.019 2.79e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7165 on 102 degrees of freedom
Multiple R-squared: 0.7151, Adjusted R-squared: 0.7039
F-statistic: 64 on 4 and 102 DF, p-value: < 2.2e-16
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Introduction

Goal

Study different methods to estimate

yt = βtXt + εt

Idea: stay close to the case of linear regression so that results remain easily
interpretable

Outline:

1. Statistical tests
2. Piecewise regressions
3. Local regressions
4. State-space models
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Statistical tests

Sommaire
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2. Statistical tests

2.1 Bai Perron

2.2 Nyblom and Hansen

3. Estimated models
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Statistical tests Bai Perron

Statistical tests: Bai and Perron

Most famous test: Bai and Perron, closed to Chow test.
They propose an efficient algorithm for finding break dates (package
strucchange). Let the model be:

yt = β0 + β1x1,t + · · · + βpxp,t + εt

We split it in two, around a date t1, and obtain two sub-models:

∀t ≤ t1 : yt = β′
0 + β′

1x1,t + · · · + β′
pxp,t + εt

∀t > t1 : yt = β′
0 + β′

1x1,t + · · · + β′
pxp,t + εt

The null hypothesis assumes that β′
0 = β′′

0 , β′
1 = β′′

1 , . . . β′
p = β′′

p
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Statistical tests Bai Perron

I code (1)

strucchange::breakdates(strucchange::breakpoints(
prod_c5 ~ overhang_ipi1_c5 + insee_bc_c5_m3
+ `diff(insee_tppre_c5_m3, 1)` + `diff(bdf_tuc_c5_m2, 1)`,
data = model_c5$model))

[1] 2008.5
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Statistical tests Bai Perron

Bai Perron’s limitations

• The break may only be on a subset of variables but in strucchange only
global tests implemented.

• Instability in the choice of date and the break is not necessarily abrupt
(e.g. slow evolution over time).

• Structural breaks are usually known
• Assume that there is a break date to be determined, we might just want

to test whether the coefficients are constant or not

I package tvCoef, implementing time-varying coefficients models has never been so easy 10 / 34



Statistical tests Bai Perron

Bai Perron’s limitations

• The break may only be on a subset of variables but in strucchange only
global tests implemented.

• Instability in the choice of date and the break is not necessarily abrupt
(e.g. slow evolution over time).

• Structural breaks are usually known
• Assume that there is a break date to be determined, we might just want

to test whether the coefficients are constant or not

I package tvCoef, implementing time-varying coefficients models has never been so easy 10 / 34



Statistical tests Bai Perron

Bai Perron’s limitations

• The break may only be on a subset of variables but in strucchange only
global tests implemented.

• Instability in the choice of date and the break is not necessarily abrupt
(e.g. slow evolution over time).

• Structural breaks are usually known

• Assume that there is a break date to be determined, we might just want
to test whether the coefficients are constant or not

I package tvCoef, implementing time-varying coefficients models has never been so easy 10 / 34



Statistical tests Bai Perron

Bai Perron’s limitations

• The break may only be on a subset of variables but in strucchange only
global tests implemented.

• Instability in the choice of date and the break is not necessarily abrupt
(e.g. slow evolution over time).

• Structural breaks are usually known
• Assume that there is a break date to be determined, we might just want

to test whether the coefficients are constant or not

I package tvCoef, implementing time-varying coefficients models has never been so easy 10 / 34



Statistical tests Nyblom and Hansen

Nyblom and Hansen

{
(H0) : constant coefficients
(H1) : coefficients follow a martingale

Hansen limits:
• Test for variance not stable (go through other tests)
• Joint test does not apply to dummies
• Applies only to stationary variables
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Statistical tests Nyblom and Hansen

I code (1)

I tvCoef::hansen_test()
hansen_test(model_c5)

Variable L Stat Conclusion
______________________________________________________________
(Intercept) 0.2725 0.47 FALSE
overhang_ipi1_c5 0.8392 0.47 TRUE
insee_bc_c5_m3 0.2867 0.47 FALSE
diff(insee_tppre_c5_m3, 1) 0.2568 0.47 FALSE
diff(bdf_tuc_c5_m2, 1) 0.1491 0.47 FALSE
Variance 0.4881 0.47 TRUE
Joint Lc 1.3188 1.9 FALSE

Lecture: True means reject H0 at level 5%
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Estimated models
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Estimated models Piecewise linear regressions

Piecewise linear regressions

Associated to Bai Perron

∃t1, . . . , tT−1 : βt = β11t≤t1 + β21t1<t≤t2 + · · · + βT 1tT−1<t

Estimated by:

1. Dividing the regressors (V[εt ] fixed in time) I tvCoef::piece_reg()

2. Piecewise linear regressions (V[εt ] varies by subperiod) I

tvCoef::bp_lm()

 use case 1 because gives a single regression output.

In both cases, coefficient estimates remain the same, differences on variances
and on real-time estimates.
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Estimated models Piecewise linear regressions

 Pros:
• Simple to understand and implement
• Easily combined with other types of models (local regressions)

 Cons:
• Assumes the existence of an abrupt break
• Imprecision in date selection
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Estimated models Piecewise linear regressions

I code (1)
pwr_mod <- piece_reg(model_c5)
summary(pwr_mod)

Time series regression with "ts" data:
Start = 1993(2), End = 2019(4)

Call:
dynlm::dynlm(formula = as.formula(formula), data = data2)

Residuals:
Min 1Q Median 3Q Max

-1.54982 -0.38309 -0.07791 0.43409 1.27348

Coefficients:
Estimate Std. Error t value Pr(>|t|)

`(Intercept)_2008.5` -5.516115 0.903736 -6.104 2.13e-08 ***
overhang_ipi1_c5_2008.5 0.098701 0.030054 3.284 0.001424 **
insee_bc_c5_m3_2008.5 0.053113 0.008527 6.229 1.21e-08 ***
`diff(insee_tppre_c5_m3, 1)_2008.5` 0.030069 0.012007 2.504 0.013942 *
`diff(bdf_tuc_c5_m2, 1)_2008.5` 0.286032 0.108827 2.628 0.009977 **
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Estimated models Piecewise linear regressions

I code (2)

`(Intercept)_2019.75` -5.569186 1.259533 -4.422 2.56e-05 ***
overhang_ipi1_c5_2019.75 0.443899 0.063963 6.940 4.44e-10 ***
insee_bc_c5_m3_2019.75 0.054734 0.012796 4.278 4.43e-05 ***
`diff(insee_tppre_c5_m3, 1)_2019.75` 0.061845 0.016102 3.841 0.000219 ***
`diff(bdf_tuc_c5_m2, 1)_2019.75` 0.296779 0.080191 3.701 0.000357 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6178 on 97 degrees of freedom
Multiple R-squared: 0.8049, Adjusted R-squared: 0.7848
F-statistic: 40.02 on 10 and 97 DF, p-value: < 2.2e-16

To only split the second variable:
pwr_mod2 <- piece_reg(model_c5, break_dates = 2008.5, fixed_var = -2)
summary(pwr_mod2)
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Estimated models Piecewise linear regressions

I code (3)

Time series regression with "ts" data:
Start = 1993(2), End = 2019(4)

Call:
dynlm::dynlm(formula = as.formula(formula), data = data2)

Residuals:
Min 1Q Median 3Q Max

-1.57740 -0.40673 -0.05138 0.44438 1.42772

Coefficients:
Estimate Std. Error t value Pr(>|t|)

`(Intercept)` -5.261235 0.685772 -7.672 1.09e-11 ***
insee_bc_c5_m3 0.051493 0.006845 7.522 2.28e-11 ***
`diff(insee_tppre_c5_m3, 1)` 0.041475 0.009493 4.369 3.03e-05 ***
`diff(bdf_tuc_c5_m2, 1)` 0.324442 0.060278 5.382 4.79e-07 ***
overhang_ipi1_c5_2008.5 0.081865 0.019316 4.238 4.99e-05 ***
overhang_ipi1_c5_2019.75 0.458413 0.061602 7.441 3.38e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Estimated models Piecewise linear regressions

I code (4)

Residual standard error: 0.6154 on 101 degrees of freedom
Multiple R-squared: 0.7984, Adjusted R-squared: 0.7865
F-statistic: 66.68 on 6 and 101 DF, p-value: < 2.2e-16
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Estimated models Local regressions

Local regressions: I tvReg

Assumption βt = β(zt) with default zt = t/T and β() locally constant
(Nadaraya-Watson) or locally linear.

β(zt) = argmin
θ0

T∑
j=1

(yj − xjθ0)2 Kb(zj − zt)

With Kb(x) = 1
b K (x/b) a kernel function to weight the observations.

Remark:
• Bandwidth b fixed or estimated.
• If b ≥ 1 all data used for each estimate.
• If b → 20 the weight associated with each obs almost identical for all

data ≃ linear regression.
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Estimated models Local regressions

 Pros:
• Simple model

 Cons:
• All coefficients vary
• Problem of choosing b: by cross-validation (between 0 and 20) but not

very discriminating.
• Strong real-time revisions possible (in estimates of b and due to the use

of asymmetric kernel)

Note:
• Possibility of combining previous models by estimating a local regression

on cut data
• By performing two regressions, we can fix the coefficients of certain

variables
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Estimated models Local regressions

I code (1)
lr_mod <- tvReg::tvLM(model_c5)

Calculating regression bandwidth... bw = 0.4203537
summary(lr_mod)

Call:
tvReg::tvLM(formula = model_c5)

Class: tvlm

Summary of time-varying estimated coefficients:
================================================

(Intercept) overhang_ipi1_c5 insee_bc_c5_m3 diff(insee_tppre_c5_m3, 1)
Min. -5.953 0.06942 0.03446 -0.007961
1st Qu. -5.702 0.11492 0.03766 0.032127
Median -4.724 0.21878 0.04651 0.037311
Mean -4.790 0.22592 0.04577 0.038769
3rd Qu. -4.044 0.33430 0.05459 0.051159
Max. -3.817 0.38812 0.05791 0.058446
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Estimated models Local regressions

I code (2)

diff(bdf_tuc_c5_m2, 1)
Min. 0.2195
1st Qu. 0.2549
Median 0.3190
Mean 0.3388
3rd Qu. 0.4300
Max. 0.4800

Bandwidth: 0.4204
Pseudo R-squared: 0.7908
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Estimated models State-space models

State-space models
State-space modeling = general methodology for dealing with a wide range
of time-series problems

Hypothesis: problem determined by a series of unobserved vectors α1, . . . , αn
associated with observations y1, . . . , yn, the relationship between αt and yt
being specified by the state-space model.

Several forms of model are possible, the simplest being linear Gaussian
models. Simplified version:

{
yt = Xtαt + εt , εt ∼ N (0, σ2)
αt+1 = αt + ηt , ηt ∼ N (0, σ2Q)

, with ηt and εt independent

with yt of dimension p × 1 vector of observations, and αt of dimension
m × 1 vector of states (state vector).

σ2 a factor simplifying the estimates (Concentration of loglikelihood).
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being specified by the state-space model.

Several forms of model are possible, the simplest being linear Gaussian
models. Simplified version:

{
yt = Xtαt + εt , εt ∼ N (0, σ2)
αt+1 = αt + ηt , ηt ∼ N (0, σ2Q)

, with ηt and εt independent

with yt of dimension p × 1 vector of observations, and αt of dimension
m × 1 vector of states (state vector).

σ2 a factor simplifying the estimates (Concentration of loglikelihood).
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Estimated models State-space models

Back to linear regression

Linear regression:{
yt = Xtα + εt , εt ∼ N (0, σ2)
αt+1 = αt = · · · = α0 = α
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Estimated models State-space models

Kalman filter estimation

Two classic operations: filtering and smoothing
• Smoothing: estimates the coefficient at each date using all available

information. Close to the estimates in-sample forecasts.

α̂t = E [αt |y0, . . . , yn]

Ex: linear regression: α̂t = α̂

• Filtering: estimates the next coefficient (in t + 1) with the information
known in t. Close to real-time (out-of-sample) forecasts.

at+1 = E [αt+1|y0, . . . , yt ]

Ex: linear regression: a2010T2 = α̂ estimated using data up to 2010T1
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Estimated models State-space models

Implementation

Usually the implementation can be difficult and variance has to be fixed. . .

Can be implemented easily with rjd3sts

tvCoef::ssm_lm() uses rjd3sts::reg() and rjd3sts::locallevel().
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Estimated models State-space models

I code (1)
ssm_mod <- ssm_lm(

model_c5, fixed_var_variables = FALSE, fixed_var_intercept = FALSE,
var_intercept = 0.01, var_variables = 0.01)

summary(ssm_mod)

Summary of time-varying estimated coefficients (smoothing):
(Intercept) overhang_ipi1_c5 insee_bc_c5_m3 diff(insee_tppre_c5_m3, 1)

Min. -5.002 0.1299 0.04326 0.002605
1st Qu. -4.912 0.2108 0.04326 0.026746
Median -4.769 0.2741 0.04326 0.029662
Mean -4.703 0.2695 0.04326 0.031070
3rd Qu. -4.436 0.3423 0.04326 0.037051
Max. -4.344 0.3707 0.04326 0.065948

diff(bdf_tuc_c5_m2, 1) noise
Min. 0.2460 -1.292e+00
1st Qu. 0.2711 -3.415e-01
Median 0.2946 -9.216e-03
Mean 0.2957 -7.919e-17
3rd Qu. 0.3078 3.612e-01
Max. 0.3794 1.234e+00
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Estimated models State-space models

I code (2)
To fix all the variables except one:
ssm_mod2 <- ssm_lm(

model_c5,
fixed_var_variables = c(FALSE, rep(TRUE, 5)),
var_variables = c(0.01, rep(0, 5))

)
summary(ssm_mod2)

Summary of time-varying estimated coefficients (smoothing):
(Intercept) overhang_ipi1_c5 insee_bc_c5_m3 diff(insee_tppre_c5_m3, 1)

Min. -4.58 0.06429 0.044 0.04181
1st Qu. -4.58 0.11283 0.044 0.04181
Median -4.58 0.19523 0.044 0.04181
Mean -4.58 0.22462 0.044 0.04181
3rd Qu. -4.58 0.34704 0.044 0.04181
Max. -4.58 0.37637 0.044 0.04181

diff(bdf_tuc_c5_m2, 1) noise
Min. 0.369 -1.385e+00
1st Qu. 0.369 -4.042e-01
Median 0.369 2.758e-02
Mean 0.369 -5.895e-16
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I code (3)

3rd Qu. 0.369 3.523e-01
Max. 0.369 1.423e+00
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Results (1)

diff(insee_tppre_c5_m3, 1) diff(bdf_tuc_c5_m2, 1)
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Results (2)
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Estimated models Conclusion

Conclusion

• Many models can be estimated around linear regressions: the framework
remains simple, but the modeling is more complex.  modeling choices
must be made

• Can improve the performance of “classical” models, they do not replace
them.
(Study of ∼ 30 forecasts models: in-sample and out-of-sample errors
always reduced with state space models)

• Models sometimes complex to implement (especially state-space)  
tvCoef can help (§ InseeFrLab/tvCoef)

See workshop for complete example: https://aqlt.github.io/AteliertvCoef/

I package tvCoef, implementing time-varying coefficients models has never been so easy 33 / 34

https://github.com/InseeFrLab/tvCoef
https://aqlt.github.io/AteliertvCoef/


Estimated models Conclusion

Conclusion

• Many models can be estimated around linear regressions: the framework
remains simple, but the modeling is more complex.  modeling choices
must be made

• Can improve the performance of “classical” models, they do not replace
them.
(Study of ∼ 30 forecasts models: in-sample and out-of-sample errors
always reduced with state space models)

• Models sometimes complex to implement (especially state-space)  
tvCoef can help (§ InseeFrLab/tvCoef)

See workshop for complete example: https://aqlt.github.io/AteliertvCoef/

I package tvCoef, implementing time-varying coefficients models has never been so easy 33 / 34

https://github.com/InseeFrLab/tvCoef
https://aqlt.github.io/AteliertvCoef/


Estimated models Conclusion

Conclusion

• Many models can be estimated around linear regressions: the framework
remains simple, but the modeling is more complex.  modeling choices
must be made

• Can improve the performance of “classical” models, they do not replace
them.
(Study of ∼ 30 forecasts models: in-sample and out-of-sample errors
always reduced with state space models)

• Models sometimes complex to implement (especially state-space)  
tvCoef can help (§ InseeFrLab/tvCoef)

See workshop for complete example: https://aqlt.github.io/AteliertvCoef/

I package tvCoef, implementing time-varying coefficients models has never been so easy 33 / 34

https://github.com/InseeFrLab/tvCoef
https://aqlt.github.io/AteliertvCoef/


Estimated models Conclusion

Thanks for you attention

TODO for tvCoef: be able to handle AR-X models.

§ https://github.com/InseeFrLab/tvCoef
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