Bibliographie
Alexandrov, Theodore, Silvia Bianconcini, Estela Dagum, Peter Maass, and
Tucker McElroy. 2012. “A Review of Some Modern Approaches to the
Problem of Trend Extraction.” Econometric Reviews 31
(November): 593–624. https://doi.org/10.1080/07474938.2011.608032.
Australian Bureau of Statistics. 1987. A Guide to Smoothing Time
Series – Estimates of "Trend". Canberra, Australia: Australian
Bureau of Statistics. https://www.abs.gov.au/AUSSTATS/abs@.nsf/productsbyCatalogue/C3AFF081DB2BC4B5CA2585A00012ACFA.
———. 2001. Feature Article: Interpreting Time Series Data.
Canberra, Australia: Australian Bureau of Statistics. https://www.abs.gov.au/Ausstats/abs@.nsf/0/cfa19371d1bfab40ca256f2a000feb10/$FILE/ATTQPLS5/Time%20Series_Final.pdf.
———. 2003. A Guide to Interpreting Time Series – Monitoring
Trends. Canberra, Australia: Australian Bureau of Statistics. https://www.abs.gov.au/ausstats/abs@.nsf/mf/1349.0.
———. 2008. Australian Bureau of Statistics Guidelines for
Presentation and Analysis of Time Series Data. Canberra, Australia:
Australian Bureau of Statistics. https://unstats.un.org/unsd/dnss/docViewer.aspx%3FdocID%3D2058&ved=2ahUKEwiQ19qI-ISNAxUHU6QEHWalKlwQFnoECBYQAQ&usg=AOvVaw025uOFvGdH9PvjKiizOIbD.
Berlinet, Alain. 1993. “Hierarchies of Higher Order
Kernels.” Probability Theory and Related Fields 94:
489–504.
Berlinet, Alain, and Christine Thomas-Agnan. 2004. Reproducing
Kernel Hilbert Spaces in Probability and Statistics. Springer.
Caporello, Gianluca, and Agustı́n Maravall. 2003. “A Tool for
Quality Control of Time Series Data. Program TERROR.” Occasional
Paper 0301. Banco de España, Research Department.
Christophe Croux, Peter J. Rousseeuw, and Ola Hössjer. 1994.
“Generalized s-Estimators.” Journal of the American
Statistical Association 89 (428): 1271–81. https://doi.org/10.1080/01621459.1994.10476867.
Cleveland, Robert B., William S. Cleveland, Jean E. McRae, and Irma
Terpenning. 1990. “STL: A Seasonal-Trend Decomposition Procedure
Based on Loess (with Discussion).” Journal of Official
Statistics 6: 3–73. https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/stl-a-seasonal-trend-decomposition-procedure-based-on-loess.pdf.
Cleveland, William S. 1979. “Robust Locally Weighted Regression
and Smoothing Scatterplots.” Journal of the American
Statistical Association 74 (368): 829–36. https://doi.org/10.2307/2286407.
Cleveland, William S., and Clive Loader. 1996. “Smoothing by Local
Regression: Principles and Methods.” In Statistical Theory
and Computational Aspects of Smoothing: Proceedings of the COMPSTAT’94
Satellite Meeting Held in Semmering, Austria, 27–28 August 1994,
10–49. Springer. https://doi.org/10.1007/978-3-642-48425-4_2.
Dagum, Estela Bee. 1996. “A New Method to Reduce Unwanted Ripples
and Revisions in Trend-Cycle Estimates from x-11-ARIMA.”
Survey Methodology 22: 77–84. https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1996001/article/14383-eng.pdf?st=UY9RsNkK.
Dagum, Estela Bee, and Silvia Bianconcini. 2008. “The Henderson Smoother in Reproducing Kernel Hilbert
Space.” Journal of Business & Economic
Statistics 26: 536–45. https://doi.org/10.1198/073500107000000322.
———. 2015. “A new set of asymmetric filters
for tracking the short-term trend in real-time.” The
Annals of Applied Statistics 9 (3): 1433–58. https://doi.org/10.1214/15-AOAS856.
———. 2016. Seasonal Adjustment Methods and Real Time Trend-Cycle
Estimation. Springer.
———. 2023. “Monitoring the Direction of the Short-Term Trend of
Economic Indicators.” Econometric Reviews 42 (5):
421–40. https://doi.org/10.1080/07474938.2023.2209008.
Dagum, Estela Bee, and Alessandra Luati. 2009. “A Cascade Linear Filter to Reduce Revisions and False
Turning Points for Real Time Trend-Cycle Estimation.”
Econometric Reviews 28 (1-3): 40–59. https://doi.org/10.1080/07474930802387837.
Darné, Olivier, and Estelle Bee Dagum. 2009. “Performance of short-term trend predictors for current
economic analysis.” Economics Bulletin 29 (1):
79–89. http://www.accessecon.com/Pubs/EB/2009/Volume29/EB-09-V29-I1-P7.pdf.
De Forest, Erastus L. 1877. “On Adjustment Formulas.”
The Analyst 4 (3): 79–86. https://doi.org/10.2307/2636257.
Fan, Jianqing, and Irene Gijbels. 1992a. “Variable Bandwidth and
Local Linear Regression Smoothers.” The Annals of
Statistics, 2008–36. https://doi.org/10.1214/aos/1176348890.
Fan, Jianqing, and Irène Gijbels. 1992b. “Variable Bandwidth and
Local Linear Regression Smoothers.” The Annals of
Statistics 20 (4): 2008–36. https://doi.org/10.1214/aos/1176348900.
Feng, Yuanhua, and Bastian Schäfer. 2021. “Boundary modification in local polynomial
regression.” Working Papers CIE 144. Paderborn University,
CIE Center for International Economics. https://ideas.repec.org/p/pdn/ciepap/144.html.
Ferrara, Laurent. 2009a. “Caractérisation Et Datation
Des Cycles économiques En Zone Euro.”
Revue économique 60 (3): 703–12. https://doi.org/10.3917/reco.603.0703.
———. 2009b. “Characterization and Dating of
Economic Cycles in the Euro
Area.” Revue Économique 60 (3): 703–12. https://doi.org/10.3917/reco.603.0703.
Fonds monétaire international. 2017. Manuel Des Comptes Nationaux
Trimestriels. Édition 2017. Washington, D.C.: Fonds monétaire
international. https://www.imf.org/external/pubs/ft/qna/pdf/2017/QNAManual2017FRE.pdf.
Fourier, Joseph. 1822. Théorie Analytique de La Chaleur. Paris:
Firmin Didot.
Fried, Roland, Karen Schettlinger, and Matthias Borowski. 2024.
Robfilter: Robust Time Series Filters. https://doi.org/10.32614/CRAN.package.robfilter.
Funkhouser, H. Gray. 1936. “A Note on a Tenth Century
Graph.” Osiris 1: 260–62. https://doi.org/10.1086/368425.
Gather, Ursula, Karen Schettlinger, and Roland Fried. 2006.
“Online Signal Extraction by Robust Linear Regression.”
Computational Statistics 21 (1): 33–51. https://doi.org/10.1007/s00180-006-0249-8.
Gray, Alistair G, and Peter J Thomson. 1996. “Design of
Moving-Average Trend Filters Using Fidelity and Smoothness
Criteria.” In Athens Conference on Applied Probability and
Time Series Analysis, edited by P. M. Robinson and Murray
Rosenblatt, 205–19. New York, NY: Springer New York. https://www.census.gov/library/working-papers/1996/adrm/rr96-01.html.
———. 2002. “On a Family of Finite
Moving-Average Trend Filters for the Ends of Series.”
Journal of Forecasting 21 (2): 125–49. https://doi.org/10.1002/for.817.
Grun-Rehomme, Michel, Fabien Guggemos, and Dominique Ladiray. 2018.
“Asymmetric Moving Averages Minimizing Phase Shift.”
Handbook on Seasonal Adjustment. https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/KS-GQ-18-001.
Grun-Rehomme, Michel, and Dominique Ladiray. 1994. “Moyennes
Mobiles Centrées Et Non-Centrées. Construction Et Comparaison.”
Revue de Statistique Appliquée 42 (3): 33–61. http://www.numdam.org/item/RSA_1994__42_3_33_0/.
Henderson, Robert. 1916. “Note on Graduation by Adjusted
Average.” Transactions of the Actuarial Society of
America 17: 43–48.
Huot, Guy, and Norma B Chhab. 1989. “A Note on the Use of
Trend-Cycle Estimates for the Help-Wanted Index.” publications.gc.ca/pub?id=9.838212&sl=0.
Hyndman, Rob J., and Yeasmin Khandakar. 2008. “Automatic Time
Series Forecasting: The Forecast Package for r.” Journal of
Statistical Software 27 (3): 1–22. https://doi.org/10.18637/jss.v027.i03.
Kendall, Maurice G. 1973. Time-Series. London: Charles Griffin.
Kenny, P. B., and J. Durbin. 1982. “Local Trend Estimation and
Seasonal Adjustment of Economic and Social Time Series.”
Journal of the Royal Statistical Society. Series A (General)
145 (1): 1–41. https://doi.org/10.2307/2981420.
Ladiray, Dominique. 2018. “Moving Average Based Seasonal
Adjustment.” Handbook on Seasonal Adjustment. https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/KS-GQ-18-001.
Ladiray, Dominique, and Alain Quartier-la-Tente. 2018. “Du Bon
Usage Des Modèles Reg-ARIMA En Désaisonnalisation.”
XIIIèmes Journées de
Méthodologie Statistique de l’Insee. https://journees-methodologie-statistique.insee.net/wp-content/uploads/2018/S05_1_ACTEv3_QUARTIERLATENTE_JMS2018.pdf.
Ladiray, Dominique, and Benoît Quenneville. 2011. Seasonal
Adjustment with the x-11 Method. Springer. https://doi.org/10.1007/978-1-4613-0175-2.
Loader, Clive. 1999. Local Regression and Likelihood. New York:
Springer-Verlag. https://doi.org/10.1007/b98858.
Luati, Alessandra, and Tommaso Proietti. 2011. “On the Equivalence
of the Weighted Least Squares and the Generalised Least Squares
Estimators, with Applications to Kernel Smoothing.” Annals of
the Institute of Statistical Mathematics 63 (4): 851–71. https://doi.org/10.1007/s10463-009-0267-8.
Macaulay, Frederick R et al. 1931. “The Smoothing of Time
Series.” NBER Books.
Martı́n, Begoña, Peter Meszaros, Duncan Elliott, and Craig McLaren. 2009.
“Issues in Trend-Cycle Estimates for Official Statistics.”
In Proceedings of the Survey Research Section, American Statistical
Association, Joint Statistics Meeting, Washington, DC.
Matthews, Steve. 2022. “Trend-Cycle Estimation in Topsy-Turvy
Times.” https://community.amstat.org/governmentstatisticssection/conferences/pastconference210/seasonal-adjustment-practitioners-workshop-2022.
McCracken, Michael W., and Serena Ng. 2016. “FRED-MD: A Monthly
Database for Macroeconomic Research.” Journal of Business
& Economic Statistics 34 (4): 574–89. https://doi.org/10.1080/07350015.2015.1086655.
McElroy, Tucker, and Marc Wildi. 2020. “The
Multivariate Linear Prediction Problem: Model-Based and Direct Filtering
Solutions.” Econometrics and Statistics 14 (C):
112–30. https://doi.org/10.1016/j.ecosta.2019.12.004.
McLaren, Craig H, and David G Steel. 2001. “Rotation Patterns and
Trend Estimation for Repeated Surveys Using Rotation Group
Estimates.” Statistica Neerlandica 55 (2): 221–38. https://documents.uow.edu.au/~craigmc/sn_2001.pdf.
McLaren, Craig H, and Xichuan (Mark) Zhang. 2010. “The Importance
of Trend-Cycle Analysis for National Statistics Institutes.”
Estudios de Economía Aplicada 28 (3): 607–24. http://www.revista-eea.net/documentos/28312.pdf.
Menezes, Zuleika, Craig H McLaren, Nick Von Sanden, Xichuan (Mark)
Zhang, and Melanie Black. 2006. “Timely Detection of Turning
Points: Should i Use the Seasonally Adjusted or Trend Estimates?”
In Proceedings of the Conference on Seasonality, Seasonal Adjustment
and Their Implications for Short-Term Analysis and Forecasting. https://ec.europa.eu/eurostat/documents/3888793/5842329/KS-DT-06-021-EN.PDF/d5eb2df1-71b8-4086-88f8-94ad2e7d2c6e.
Monsell, Brian C. 2007. “The x-13A-s Seasonal Adjustment
Program.” In Proceedings of the Federal Committee on
Statistical Methodology Research Conference, November 5–7, 2007,
515. Arlington, Virginia. https://nces.ed.gov/FCSM/pdf/2007FCSM_Monsell-II-B.pdf.
Musgrave, John C. 1964. “A Set of End Weights to End All End
Weights.” US Census Bureau [Custodian]. https://www.census.gov/library/working-papers/1964/adrm/musgrave-01.html.
Office for Statistics Regulation. 2008. “Volatility of the Retail
Sales Index.” Monitoring \& Assessment Note M&A Note
1/2008. UK Statistics Authority; https://osr.statisticsauthority.gov.uk/publication/volatility-of-the-retail-sales-index/.
Palate, Jean, and Alain Quartier-la-Tente. 2024. Rjd3filters:
Trend-Cycle Extraction with Linear Filters. https://github.com/rjdverse/rjd3filters.
Persons, Warren M. 1919. “Indices of General Business
Conditions” 1 (1): 5–107.
Picard, Frédéric, and Steve Matthews. 2016. “The Addition of
Trend-Cycle Estimates to Selected Publications at Statistics
Canada.” Proceedings of the Survey Methods Section, Statistical
Society of Canada (SSC) Annual Meeting. https://ssc.ca/sites/default/files/imce/pdf/picard_ssc2016.pdf.
Pierce, David A. 1980. “Data Revisions with Moving Average
Seasonal Adjustment Procedures.” Journal of Econometrics
14 (1): 95–114. https://doi.org/10.1016/0304-4076(80)90075-5.
Poynting, John Henry. 1884. “A Comparison of the Fluctuations in
the Price of Wheat and in the Cotton and Silk Imports into Great
Britain.” Journal of the Royal Statistical Society, A,
47: 34–64. https://doi.org/10.2307/2979211.
Proietti, Tommaso, and Alessandra Luati. 2008. “Real Time
Estimation in Local Polynomial Regression, with Application to
Trend-Cycle Analysis.” Ann. Appl. Stat. 2 (4): 1523–53.
https://doi.org/10.1214/08-AOAS195.
Quartier-la-Tente, Alain. 2024a. “Estimation En Temps
réel de La Tendance Cycle : Apport de
l’utilisation de Moyennes Mobiles Asymétriques.”
Document de Travail Méthodologique Insee, no. M2024/01. https://github.com/InseeFrLab/DT-est-tr-tc.
———. 2024b. “Improving Real-Time Trend Estimates Using Local
Parametrisation of Polynomial Regression Filters.” Journal of
Official Statistics 40 (4): 685–715. https://doi.org/10.1177/0282423X241283207.
———. 2025a. “Estimation de La Tendance-Cycle Avec Des Méthodes
Robustes Aux Points Atypiques.” https://aqlt.github.io/robustMA/.
———. 2025b. publishTC: Tools to Help to Publish the Trend-Cycle
Component.
R Core Team. 2022. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
Rousseeuw, Peter J. 1984. “Least Median of Squares
Regression.” Journal of the American Statistical
Association 79 (388): 871–80.
Rousseeuw, Peter J. 1985. “Multivariate Estimation with High
Breakdown Point.” Mathematical Statistics and Applications
B. https://doi.org/10.2307/2288718.
Rousseeuw, Peter J., and Mia Hubert. 1999. “Regression
Depth.” Journal of the American Statistical Association
94 (446): 388–402. https://doi.org/10.1080/01621459.1999.10474129.
Ruppert, D., S. J. Sheather, and M. P. Wand. 1995. “An Effective
Bandwidth Selector for Local Least Squares Regression.”
Journal of the American Statistical Association 90 (432):
1257–70. https://doi.org/10.1080/01621459.1995.10476630.
Shiskin, Julius. 1957. “Electronic Computers and Business
Indicators.” Occasional Paper No. 57. National Bureau of Economic
Research. https://www.nber.org/books-and-chapters/electronic-computers-and-business-indicators.
Siegel, Andrew F. 1982. “Robust Regression Using Repeated
Medians.” Biometrika 69 (1): 242–44. https://doi.org/10.2307/2335877.
Spencer, John. 1904. “On the Graduation of the Rates of Sickness
and Mortality.” Journal of the Institute of Actuaries
38: 334–43. https://doi.org/10.1017/S0020268100008076.
Trewin, Dennis. 2003. “A Guide to Interpreting Time Series -
Monitoring Trends.” Australian Bureau of Statistics
Information Paper. https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/1349.0Main+Features12003?OpenDocument.
Vasyechko, Olga, and Michel Grun-Rehomme. 2014. “A New Smoothing
Technique for Univariate Time Series: The Endpoint Problem.”
Economics Bulletin 34 (3): 1419–30. https://EconPapers.repec.org/RePEc:ebl:ecbull:eb-13-00344.
Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics
with s. Fourth. New York: Springer. https://www.stats.ox.ac.uk/pub/MASS4/.
Wildi, Marc, and Tucker McElroy. 2013. “Optimal Real-Time Filters
for Linear Prediction Problems.” Journal of Time Series
Econometrics 8 (December). https://doi.org/10.1515/jtse-2014-0019.
———. 2019. “The Trilemma Between Accuracy, Timeliness and
Smoothness in Real-Time Signal Extraction.” International
Journal of Forecasting 35 (3): 1072–84. https://doi.org/10.1016/j.ijforecast.2019.03.008.
Wildi, Marc, and Bernd Schips. 2004. “Signal
Extraction: How (In)efficient Are Model-Based Approaches? An Empirical
Study Based on TRAMO/SEATS and Census X-12-ARIMA.” KOF
Working papers 04-96. KOF Swiss Economic Institute, ETH Zurich. https://doi.org/10.3929/ethz-a-004957347.
Zellner, Arnold, Chansik Hong, and Chung-ki Min. 1991.
“Forecasting Turning Points in International Output Growth Rates
Using Bayesian Exponentially Weighted Autoregression, Time-Varying
Parameter, and Pooling Techniques.” Journal of
Econometrics 49 (1): 275–304. https://doi.org/10.1016/0304-4076(91)90016-7.